Elevated temperature enhances virulence of Erwinia carotovora subsp. carotovora strain EC153 to plants and stimulates production of the quorum sensing signal, N-acyl homoserine lactone, and extracellular proteins.

نویسندگان

  • H Hasegawa
  • A Chatterjee
  • Y Cui
  • A K Chatterjee
چکیده

Erwinia carotovora subsp. atroseptica, E. carotovora subsp. betavasculorum, and E. carotovora subsp. carotovora produce high levels of extracellular enzymes, such as pectate lyase (Pel), polygalacturonase (Peh), cellulase (Cel), and protease (Prt), and the quorum-sensing signal N-acyl-homoserine lactone (AHL) at 28 degrees C. However, the production of these enzymes and AHL by these bacteria is severely inhibited during growth at elevated temperatures (31.2 degrees C for E. carotovora subsp. atroseptica and 34.5 degrees C for E. carotovora subsp. betavasculorum and most E. carotovora subsp. carotovora strains). At elevated temperatures these bacteria produce high levels of RsmA, an RNA binding protein that promotes RNA decay. E. carotovora subsp. carotovora strain EC153 is an exception in that it produces higher levels of Pel, Peh, Cel, and Prt at 34.5 degrees C than at 28 degrees C. EC153 also causes extensive maceration of celery petioles and Chinese cabbage leaves at 34.5 degrees C, which correlates with a higher growth rate and higher levels of rRNA and AHL. The lack of pectinase production by E. carotovora subsp. carotovora strain Ecc71 at 34.5 degrees C limits the growth of this organism in plant tissues and consequently impairs its ability to cause tissue maceration. Comparative studies with ahlI (the gene encoding a putative AHL synthase), pel-1, and peh-1 transcripts documented that at 34.5 degrees C the RNAs are more stable in EC153 than in Ecc71. Our data reveal that overall metabolic activity, AHL levels, and mRNA stability are responsible for the higher levels of extracellular protein production and the enhanced virulence of EC153 at 34.5 degrees C compared to 28 degrees C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative analysis of two classes of quorum-sensing signaling systems that control production of extracellular proteins and secondary metabolites in Erwinia carotovora subspecies.

In Erwinia carotovora subspecies, N-acyl homoserine lactone (AHL) controls the expression of various traits, including extracellular enzyme/protein production and pathogenicity. We report here that E. carotovora subspecies possess two classes of quorum-sensing signaling systems defined by the nature of the major AHL analog produced as well as structural and functional characteristics of AHL syn...

متن کامل

Identification of a global repressor gene, rsmA, of Erwinia carotovora subsp. carotovora that controls extracellular enzymes, N-(3-oxohexanoyl)-L-homoserine lactone, and pathogenicity in soft-rotting Erwinia spp.

The production of extracellular enzymes such as pectate lyase (Pel), polygalacturonase (Peh), cellulase (Cel), and protease (Prt) is activated by the cell density (quorum)-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone (HSL); plant signals; and aep genes during postexponential growth of Erwinia carotovora subsp. carotovora 71. Studies with mutants of E. carotovora subsp. carotovora 71 d...

متن کامل

ExpR, a LuxR homolog of Erwinia carotovora subsp. carotovora, activates transcription of rsmA, which specifies a global regulatory RNA-binding protein.

N-acyl homoserine lactone (AHL) is required by Erwinia carotovora subspecies for the expression of various traits, including extracellular enzyme and protein production and pathogenicity. Previous studies with E. carotovora subsp. carotovora have shown that AHL deficiency causes the production of high levels of RsmA, an RNA binding protein that functions as a global negative regulator of extrac...

متن کامل

Quorum sensing in the plant pathogen Erwinia carotovora subsp. carotovora: the role of expR(Ecc).

The production of the main virulence determinants of the plant pathogen Erwinia carotovora subsp. carotovora, the extracellular cell wall-degrading enzymes, is partly controlled by the diffusible signal molecule N-(3-oxohexanoyl)-L-homoserine lactone (OHHL). OHHL is synthesized by the product of the expI/carI gene. Linked to expI we found a gene encoding a putative transcriptional regulator of ...

متن کامل

RsmA and the quorum-sensing signal, N-[3-oxohexanoyl]-L-homoserine lactone, control the levels of rsmB RNA in Erwinia carotovora subsp. carotovora by affecting its stability.

RsmA (for regulator of secondary metabolism), RsmC, and rsmB RNA, the components of a posttranscriptional regulatory system, control extracellular protein production and pathogenicity in Erwinia carotovora subsp. carotovora. RsmA, an RNA binding protein, acts as a negative regulator by promoting message decay. rsmB RNA, on the other hand, acts as a positive regulator by neutralizing the effect ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 71 8  شماره 

صفحات  -

تاریخ انتشار 2005